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Stability of Attractive Bose�Einstein Condensates
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We propose the critical nonlinear Schro� dinger equation with a harmonic poten-
tial as a model of attractive Bose�Einstein condensates. By an elaborate mathe-
matical analysis we show that a sharp stability threshold exists with respect to
the number of condensate particles. The value of the threshold agrees with
the existing experimental data. Moreover with this threshold we prove that a
ground state of the condensate exists and is orbital stable. We also evaluate the
minimum of the condensate energy.
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1. INTRODUCTION

Experimental realization of Bose�Einstein condensation in ultracold vapors
of 7Li atoms(1) opened a new field in the study of macroscopic quantum
phenomena.(6, 10, 11, 32) Bose�Einstein Condensates (BEC) with attractive
interactions are known to be metastable in spatially localized systems,
provided that the number of condensed particles, say N, is below a critical
value Nc , while they are unstable if N�Nc .(6, 10, 11, 32) We call this number Nc

the threshold of stability. In light of the experimental observation of attractive
BEC, a remarkable series of theoretical researches are conducted(6, 10, 11, 32)

in terms of the Gross�Pitaevskii (GP) equation.(9, 25) But, as we will show
later, except in two dimensional space, the GP equation is not an accurate
model for the attractive BEC since this equation does not give rise to a
threshold of stability that is characteristic of attractive BEC. This leads to
the following question: Can we modify the GP equation and establish a
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new theoretical framework for attractive BEC? Furthermore, will the new
framework yield qualitative and quantitative results that agree with existing
experimental observations?

We find that for the GP equation the break comes from the nonlinear
interaction power term |,|2 ,. From GP equation, we propose a modified
equation with a nonlinear interaction power term |,| p ,. By a scaling argu-
ment and known mathematical results, it is shown that p=4�D is a unique
choice for an attractive BEC model, where D is the space dimension. And
in this case, the corresponding modified equation is just the critical non-
linear Schro� dinger equation with a harmonic potential. Then we can apply
Weinstein's idea for classic critical nonlinear Schro� dinger equation(33) and
through an elaborate mathematical analysis we show that for the modified
equation with the nonlinear interaction power term |,|4�D ,, a sharp
stability threshold exists with respect to the number of condensate particles.
Moreover the value of the threshold predicted by our model equation
agrees with the existing experimental data.(1) With this threshold we also
show that a ground state of the condensate exists and is orbital stable,
which is another characteristic of attractive BEC. We also evaluate the
minimum of the condensate energy by a variational computation.

Thus we claim that the critical nonlinear Schro� dinger equation with a
harmonic potential is a proper model equation of attractive BEC which
realizes qualitative and quantitative results that agree with existing experi-
mental observations. The two dimensional GP equation is consistent with
our claim, but the three dimensional GP equation can not be regarded as
a model of attractive BEC since in essence it is contradictory with the
characteristics of attractive BEC. On the other hand, we remark that for
repulsive BEC, GP equation is an accurate model (see ref. 6).

In the following we first discuss the GP equation and propose the
modified model equation for attractive BEC. In Section 3, we state a
rigorous local theory for the modified equation. In Section 4, we show the
threshold of the stability to exist in the modified equation, which agrees
with the experimental data. In Section 5, with the sharp threshold we
further use a variational argument to prove the existence and orbital
stability of the ground state in the condensate.

2. THE MODEL OF ATTRACTIVE BEC

At low enough temperature, neglecting the thermal and quantum fluc-
tuations, a Bose condensate can be represented by a complex wave func-
tion �� (x~ , t~ ) that obeys the dynamics of the GP equation.(9, 25) Specifically,
we consider a condensate of N particles of mass m and negative effective
scattering length a~ in a radial confining harmonic potential V(r)=m|2r2�2.
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As in ref. 10, using variables rescaled by the natural quantum harmonic
oscillator units of time {0=1�| and length L0=- ��(m|): t=t~ �(2{0), x=
x~ �L0 , �� (x~ , t~ )=�(x, t) and a=8?a~ �L0 , we get the GP equation to describe
the condensate as follows:

i
��
�t

=&2�+|x|2 �+a |�|2 �, t�0, x # RD (2.1)

We note that in Eq. (2.1) a<0 since a~ is negative. Equation (2.1) is regarded
as a model of attractive BEC (see refs. 6, 10, 11, 32 and the references
therein). It is well known that Eq. (2.1) possesses the following two con-
served quantities

A=|
RD

( |{�|2+|x| 2 |�|2+ 1
2a |�|4) dx (2.2)

N=|
RD

|�|2 dx (2.3)

A and N represent the total energy and particle number in condensate
respectively.

Now we explain why GP equation is not an accurate model for an
attractive BEC. From an extended Zakharov's theory, (3, 31) one sees that
the condensate wave function �(x, t) collapses when the energy A<0.
Now we take N0 to be sufficiently small and �(x, 0) to be an arbitrarily
given initial density such that �RD |�(x, 0)| 2 dx=N0 . For *>0, let �*=
*D�2�(*x, 0). Then we still have �R D |�*| 2 dx=N0 . And from (2.2), the
energy corresponding to �* is

A*=|
RD

[*2 |{�(x, 0)|2+*&2 |x|2 |�(x, 0)| 2+ 1
2a*D |�(x, 0)| 4] dx (2.4)

Thus for given �(x, 0), when D�3, we can always take * large enough so
that A*<0 since a<0. Hence, by the above mentioned extened Zakharov's
theory, the solution of Eq. (2.1) with the initial density �* collapses. This
means that if D�3, collapse can occur, even if the particle number in con-
densate is sufficiently small. Therefore, there is no critical value of conden-
sates at all. This is contradictory with the known properties of attractive
BEC.(1) Thus the GP equation (2.1) with D�3 is not an accurate model
for attractive BEC.

We know that the collapse in essence comes from nonlinear interacting.
From (2.4) we see that just as *D that comes from the nonlinear interaction
energy �RD |�|4 dx in Eq. (2.1) can not balance *2 that comes from the
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kinetic energy �RD |{�|2 dx in Eq. (2.1) when D�3, the negative energy
appears and the collapse occurs for sufficiently small particle number N.
Thus set p>1 we replace |�|2 by |�| p in Eq. (2.1) for modifying the
balance between the nonlinear interaction energy and the kinetic energy.
Then we get the equation

i
��
�t

=&2�+|x|2 �+a |�| p&1 �, t�0, x # RD (2.5)

Equation (2.5) possesses the following conservation quantity of energy on
time t,

I=|
RD \ |{�| 2+|x|2 |�| 2+

2
p+1

a |�| p+1+ dx (2.6)

and the conservation quantity of particle number N that is the same as
(2.3). We still put �*=*D�2�(*x, 0) for *>0. Then for p>4�D, the same
instability results as above always hold, so there is no threshold of stability.
On the other hand, when p<4�D, earlier mathematical studies(22, 38) show
that for any particle number N, the condensate is always metastable, which
is again contradictory with the known features of attractive BEC. Hence
the only remaining choice for the nonlinear interaction exponent in
Eq. (2.5) is p=4�D. It turns out that this choice of p does indeed give rise
to a threshold phenomenon. Thus we propose the following equation as a
more appropriate model for an attractive BEC:

i
��
�t

=&2�+|x|2 �+a |�|4�D �, t�0, x # RD (2.7)

which is the critical nonlinear Schro� dinger equation with a harmonic
potential. From a rigorous viewpoint of mathematics, in the following we
first study the local well-posedness of Eq. (2.7).

3. LOCAL WELL-POSEDNESS

We impose the initial data of Eq. (2.7) as follows.

�(0, x)=�0 , x # RD (3.1)

For Eq. (2.7), we define the energy space in the course of nature by

H :={. # H1(RD), | |x|2 |.|2 dx<�= (3.2)
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Here and hereafter, for simplicity, we denote �RD } dx by � } dx. H becomes
a Hilbert space, continuously embedded in H1(RD), when endowed with
the inner product

(., ,) H=| {. {,� +.,� +|x| 2 .,� dx (3.3)

whose associated norm we denote by & }&H .
We define the energy functional in H as follows.

E(.) :=| |{.|2+|x| 2 |.|2+
1

1+2�D
a |.| 2+4�D dx (3.4)

In terms of the smoothness off the time 0 of Schro� dinger kernel for
potentials of quadratic growth provided by Fujiware, (8) Oh(22) established
the local well-posedness of the Cauchy problem of Eq. (2.7) with initial
data (3.1) in the corresponding energy space H (also see ref. 3).

Proposition 3.1. Let �0 # H. Then there exists a unique solution �
of the Cauchy problem (2.7), (3.1) in C([0, T ); H) for some T # (0, �]
(maximal existence time), and �(t, } ) satisfies the following two conserva-
tion laws of particle number N:

| |�|2 dx=| |�0 |2 dx

and energy

E(�)=E(�0)

for all t # [0, T ). Furthermore we have the following alternatives: T=� or
else T<� and limt � T &�&H=� (collapse).

By a direct calculation (also see ref. 3) we have

Proposition 3.2. Let �0 # H and � be a solution of the Cauchy
problem (2.7), (3.1) in C([0, T ); H ). Put J(t) :=� |x|2 |�|2 dx. Then one
has J$(t)=&2I � x� {�� dx and

J"(t)=8E(�0)&16 | |x| 2 |�|2 dx (3.5)
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Thus one can imply that

Corollary 3.1. Let �0 # H. Then when E(�0)<0, the solution � of
the Cauchy problem (2.7), (3.1) collapse in a finite time. In other words,
there is T<� such that

lim
t � T

&�&H=�

Remark 3.1. From Proposition 3.2 we can get that when
E(�0)�0, that is for zero energy or positive energy, there are also collapse
solutions of the Cauchy problem (2.7), (3.1). In ref. 37, By constructing a
kind of cross-constrained minimization problem we get a sharp threshold
of collapse solutions of the Cauchy problem (2.7), (3.1) in terms of the
cross-invariant sets.

Remark 3.2. Consider Eq. (2.5). From ref. 22, when 1<p<1+4�D,
we have the global well-posedness of the Cauchy problem (2.5), (3.1). And
from ref. 3, when p�1+4�D, there are collapse solutions to exist for the
Cauchy problem (2.5), (3.1). So we call the nonlinearity |�|4�D � critical
nonlinearity.

Remark 3.3. In Eq. (2.5), we replace |x|2 by a general real valued
potential V(x). Then we get the following nonlinear Schro� dinger equation
with a potential V(x):

i ����t=&2�+V(x) �+a |�| p&1 �, t�0, x # RD (3.6)

Since Yajima(35) showed that for super-quadratic potentials, the Schro� dinger
kernel is nowhere C1, from Oh(22) it is known that quadratic potentials are
the highest order potential for local well-posedness of Eq. (3.6). Then V(x)
=|x|2 in potentials is critical for the local existence of the Cauchy problem
(3.6), (3.1). At the same time, from Remark 3.2, p=1+4�D in dimension
D is also the critical value for the global existence of the Cauchy problem
(3.6), (3.1). Thus we get that Eq. (2.7) is critical both in potentials for the
local existence and in dimension for the global existence.

4. SHARP THRESHOLD OF THE STABILITY

In this section, we use the variational approach to establish the rela-
tion between a classic elliptic equation and Eq. (2.7). Then we can get the
sharp threshold of the stability for Eq. (2.7).
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Consider the nonlinear scalar field equation

&2u+
2
D

u&|u|4�D u=0, u # H1(RD) (4.1)

From refs. 33 and 12, we have the following lemma.

Lemma 4.1. Equation (4.1) has a unique positive radially symmetric
solution Q(x), that is, a solution Q(x) depending only on |x|. Moreover
(D�(2+D))(� Q2 dx)2�D is the minimum of the functional

I(�)=\| |{�|2 dx+\| |�|2 dx+
2�D

<\| |�|2+4�D dx+ , , # H (4.2)

Remark 4.1. From Lemma 4.1, we can get

| |�| 2+4�D dx�
2+D

D \| Q2 dx+
&2�D

\| |{�|2 dx+\| |�|2 dx+
2�D

(4.3)

which is just the Gagliardo�Nirenberg inequality. Moreover from Eq. (4.1),
Q(x) satisfies that

(1+2�D) | |{Q| 2 dx=| |Q|2+4�D dx (4.4)

Next we state an inequality as follows (also see refs. 30 and 33).

Lemma 4.2. Let u # H. Then we have

| |u|2 dx�
2
D \| |{u|2 dx+

1�2

\| |x|2 |u|2 dx+
1�2

Proof. From the identity

&D | |u| 2 dx=2R | u� x } {u dx

and the Cauchy�Schwarz inequality, it follows the above inequality.
We also note that ``2�D'' is the best constant for the above inequality

with equality holding for the function u=exp(&1
2 |x| 2).
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Then we give a lemma about the collapse of the solutions of Eq. (2.7).

Lemma 4.3. If �0 �0 satisfies that

J(0)=| ( |x|2 |�0 | 2) dx�E(�0)

then the solutions � of Eq. (2.7) with the initial data (3.1) collapse in a
finite time.

Proof. From Proposition 3.2 we have

J(t)=; sin(4t+%)+ 1
2E(�0) (4.5)

where ; and % are constants determined by J(0) and J$(0). Moreover

;2=[J(0)& 1
2 E]2+ 1

16 [J$(0)]2 (4.6)

Thus if J(0)�E, (4.5) and (4.6) imply that there exists T<� such that

lim
t � T

J(t)=0

By Lemma 4.2 we get that

lim
t � T | |{�|2 dx=�

This shows that �(x, t) collapses.
Now we can claim the sharp threshold of the stability for Eq. (2.7).

Theorem 4.1. Let Q(x) be the positive radially symmetric solution
of Eq. (4.1). If �0 satisfies �0 # H and &�0&L2<|a|&D�4 &Q&L2 , then the
solution �(t, x) of the Cauchy problem (2.7), (3.1) exists globally in time.
At the same time, for arbitrary positive * and complex c satisfying |c|�1,
if we take initial data �0 # H such that �(x, 0)=c*D�2 |a|&D�4 Q(*x), then
&�0&L2=|c| |a| &D�4 (� Q2 dx)1�2�|a|&D�4 &Q&L2 and the solutions �(t, x) of
the Cauchy problem (2.7), (3.1) collapse in a finite time.

Proof. Let �(t, x) # C([0, T ); H ) be a solution of the Cauchy
problem (2.7), (3.1). From (3.4) and Proposition 3.1, applying Lemma 4.1
we get that

| {_1+a \� |�|2 dx
� Q2 dx +

2�D

& |{�|2+|x|2 |�|2= dx�E(�0) (4.7)
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Thus from

| |�|2 dx<|a| &D�2 | Q2 dx

we imply that � |{�|2 dx and � ( |x|2 |�|2) dx are bounded for t # [0, T )
and any T<�. By Proposition 3.1, it yields that �(t, x) globally exists in
t # [0, �).

Now we take the initial data such that

�(x, 0)=c*D�2 |a|&D�4 Q(*x)

with arbitrary positive * and complex c satisfying |c|�1. Then

| |�(x, 0)|2 dx=|c| 2 |a| &D�2 | Q2 dx�|a| &D�2 | Q2 dx

And from (3.4), (4.4), the corresponding energy is

E=(1&|c|4�D) |c|2 |a|&D�2 *2 | |{Q|2 dx+J(0)�J(0)

Thus Lemma 4.3 yields that �(t, x) collapses in a finite time.
According to Theorem 4.1 we thus claim that

Nc=[|a|&D�4 &Q&L2]2=|a|&D�2 | Q2 dx (4.8)

is the critical value of condensed particles, which is just the sharp threshold
for the stability of Eq. (2.7).

From the viewpoint of Mathematics, Theorem 4.1 is surprise because
the critical value in initial data for global existence of Eq. (2.7) is
|a|&D�4 &Q&L2 , which is just the critical value in initial data for global exist-
ence of the classic critical nonlinear Schro� dinger equation without any
potential (see ref. 33)

i
��
�t

=&2�+a |�|4�D �, t�0, x # RD (4.9)

Since the minimal blowup solutions of both Eq. (4.9) and Eq. (2.7) are
generated by the same positive radially symmetric solution of Eq. (4.1),
many mature results on the blowup properties of Eq. (4.9) (see refs. 15, 16,
and 18) can be used in Eq. (2.7).
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From the viewpoint of Physics, Theorem 4.1 is more meaningful since
the existence of critical value |a|&D�4 &Q&L2 realizes the properties of attrac-
tive BEC by the model equation (2.7). In Section 2 we have claimed that
Eq. (2.7) is a unique selection as a model equation of attractive BEC.
Theorem 4.1 justified that this selection is accurate by a rigorous mathe-
matical statement. Furthermore we can use the experimental data in ref. 1
to verify the accuracy of the above statement. From refs. 1 and 10, we get
that a=&1.148_10&2. We take D=2 and from ref. 33, � Q2 dx=2?_
1.862... . Thus we get the critical value Nc of attractive BEC is

Nc=[|a| &D�4 &Q&L2]2=(1.148_10&2)&1_2?_1.862...=1019 (4.10)

which is well consistent with the experimental results in ref. 1.

5. THE STABLE GROUND STATES

In this section, we study the stable ground state of Eq. (2.7). From
refs. 33 and 34, when &�(0, } )&L2<|a| &D�4 &Q&L2 , Eq. (4.9) has no any
standing waves to exist. When &�(0, } )&L2=|a|&D�4 &Q&L2 , there are stand-
ing waves with ground state in Eq. (4.9). But these standing waves are
unstable with collapse. For Eq. (2.7), the situation is completely different.
Firstly we have the following lemma (also see ref. 38).

Lemma 5.1. Let 1�q<(D+2)�(D&2) when D�3 and 1�q<�
when D=1, 2. Then the embedding H/�Lq+1(RD) is compact.

Proof. We firstly show it for q=1.
Since H/�H1(RD) continuously, it follows that by Sobolev's embed-

ding theorem H/�Lq+1(RD) continuously. Now let (un)n/H be a sequence
such that

un ( 0, weakly in H

Then we have

un ( 0, weakly in H1(RD) (5.1)

Moreover we have M :=supn &un &H<�. Let =>0, then there exists B>0
such that 1�|x|2�= for |x|�B. For B, from (5.1) we have

un � 0 in L2([ |x|�B])

It follows that there exists m such that

|
|x|�B

|un | 2 dx�= for n�m

740 Zhang



Then when n�m, we get

| |un | 2 dx=|
|x|�B

|un |2 dx+|
|x| �B

|un |2 dx

�=+= |
|x|�B

|x|2 |un |2 dx�=+=cM 2

Here and hereafter c denotes various positive constants. Thus we get that

un � 0 in L2(RD)

It follows that H/�L2(RD) is compact.
For q>1, using the conclusion of q=1 and the Gagliardo�Nirenberg

inequality,

&u&q+1
Lq+1(RD)

�c &{u& (D�2)(q&1)
L2(RD)

&u&q+1&(D�2)(q&1)
L2(RD)

we can get the conclusion immediately.
Now for N>0, we define a variational problem as follows.

dN := inf
[u # H, � |u|2 dx=N ]

E(u) (5.2)

Lemma 5.2. If N in (5.2) satisfies, N 1�2<|a|&D�4 &Q&L2 , then we
have

dN= min
[u # H, � |u|2 dx=N ]

E(u) (5.3)

Proof. Let un # H such that

| |un | 2 dx � N, E(un) � dN (5.4)

Since

N 1�2<|a|&D�4 &Q&L2 (5.5)

(5.4) implies that there exists m such that for n>m one has

| |un | 2 dx<|a|&D�2 &Q&2
L2 (5.6)

E(un)<dN+1 (5.7)
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By (3.4) and Lemma 4.1, it follows from (5.7) that

| {_1+a \� |un |2 dx
� Q2 dx +

2�D

& |{un |2+|x|2 |un |2= dx�dN+1 (5.8)

Thus from (5.6) we imply that � |{un | 2 dx and � ( |x|2 |u2
n| ) dx are bounded

for all n>m. It yields that [un , n # Z] is bounded in H. Therefore there
exists u # H such that

un ( u in H (5.9)

By Lemma 5.1, then

un � u in L2(RD) (5.10)

un � u in L2+4�D(RD) (5.11)

Thus (5.10) implies that

| |u|2 dx=N (5.12)

From (5.9), (5.11) and (5.12), we get that E(u)=dN . So (5.3) is true.
We denote the set of the minimizers of the minimization problem (5.3)

by SN . Then for any u # SN , there exists a Lagrange multiplier 4 # R such
that u is a solution of the elliptic equation

&2u+|x|2 u+4u+au |u| 4�D=0 (5.13)

It follows that �(t, x)=ei4tu is a standing wave solution of Eq. (2.7), which
is also called ground state since u is a minimizer of (5.3). Thus ei4tu( } ) is
the orbit of u. It is obvious that for any t�0, if u is a solution of (5.3), then
ei4tu is also a solution of (5.3), that is ei4tu # SN . Now in terms of Cazenave
and Lions' argument, (5) we have the following orbital stability.

Lemma 5.3. Let N satisfy that N 1�2<|a|&D�4 &Q&L2 . Then for
arbitrary =>0, there exists _>0 such that for any �0 # H, if

inf
u # SN

&�0&u&H<_

then the solution �(t, x) of the Cauchy problem (2.7)�(3.1) satisfies

inf
u # SN

&�(t, } )&u( } )&H<=, for all t�0
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Proof. Firstly for any �0 # H satisfying &�0&L2<|a|&D�4 &Q&L2 , from
Theorem 4.1, the corresponding solution �(t, x) of the Cauchy problem
(2.7)�(3.1) is global and bounded in H. Now arguing by contradiction,
if the conclusion of Lemma 5.3 does not hold, then there exist =>0,
a sequence (�n

0)n # Z such that

inf
u # SN

&�n
0&u&H<

1
n

(5.14)

and a sequence (tn)n # Z such that

inf
u # SN

&�n(tn , } )&u( } )&H�= (5.15)

where �n denotes the solution of the Cauchy problem (2.7)�(3.1) with
initial datum �n

0 . From (5.14), we have

| |�n
0 | 2 dx � | |u|2 dx=N (5.16)

E(�n
0) � E(u)=dN (5.17)

It follows from (5.16), (5.17) and the conservation laws in Proposition 3.1
that (�n(tn , } ))n # Z is a minimizing sequence for the problem (5.3). There-
fore there exists u # SN such that

&�n(tn , } )&u&H � 0 as n � �

This is contradictory with (5.15). Thus this proves Lemma 5.3.
By Lemma 5.2 and Lemma 5.3, thus we can claim the following

theorem.

Theorem 5.1. Let N satisfy that N 1�2=&�(0, } )&L2<|a|&D�4 &Q&L2 .
Then the minimization problem (5.3) has minimizers to exist. And Eq. (2.7)
has standing waves with ground state. Moreover these standing waves are
orbitally stable.

Thus we see that although the global existence and the collapse
properties of Eq. (4.9) are consistent with the corresponding properties of
Eq. (2.7), on the standing waves, Eq. (4.9) is essentially different from
Eq. (2.7). This difference just comes from Eq. (2.7) having a harmonic
potential. Moreover experimental attractive BEC has shown that below the
critical value Nc of the condensed particles, the attractive BEC has
metastable ground state to exist. Thus the conclusion of Theorem 5.1 is
well consistent with the properties of attractive BEC.
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From (5.13), one has

| ( |{u|2+|x|2 |u|2+4 |u| 2+a |u|2+4�D) dx=0 (5.19)

On the other hand from (5.13) we also have Pohzaev identity,

| _4 |u| 2+(1&2�D) |{u| 2+(1+2�D) |x| 2 |u|2+
D

D+2
a |u| 2+4�D& dx

(5.20)

From (5.19) and (5.20) we have

| \ |{u|2&|x|2 |u|2+
D

2+D
a |u|2+4�D+ dx=0 (5.21)

Thus by (3.4), we get the energy of the ground state is

EN=2 | ( |x|2 |u|2) dx (5.22)

where u is the minimizer of (5.3) subject to N<Nc . So (5.22) is also the
minimal energy of the condensate subject to N<Nc .
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